Banamine ${ }^{\circ}$

FOR PAIN AND FEVER IN CATTLE, RELIEF IS IN THE PALM OF YOUR HAND.

Banamine ${ }^{\circ}$ Transdermal.
 The first FDA-approved pour-on for pain and fever control in cattle.

Easy-to-use Banamine ${ }^{\circ}$ Transdermal (flunixin transdermal solution) is FDA-approved to control pain due to foot rot and control of fever due to acute mastitis and BRD. Banamine Transdermal is the only non-steroidal anti-inflammatory (NSAID) cattle product available with a convenient pour-on route of administration.

Relieve pain and fever in four simple steps.

Step 1: Determine animal's weight. Select correct dose using bottle's dosing chamber, which is calibrated in pounds of body weight (dose is 3 mL per 100 lbs). Round all doses up to nearest weight increment on chamber.

Step 2: On first use, remove the cap and peelable seal from the dosing chamber. Do not remove the cap from the storage bottle.

Visit BanamineTD.com for more information.

Dress right for the job.

1. Wear eye protection, such as safety glasses or goggles
2. Wear appropriate clothing, such as a long-sleeved shirt and pants, to prevent skin contact
3. Wear chemical-resistant gloves
4. Wash hands after use

Step 3: Hold the bottle upright and at eye level while slowly and gently squeezing the bottle to fill the dosing chamber to the selected mark.

Step 4: Pour the measured volume on the midline of the animal's back extending from the withers to tail head. Localized application to smaller areas should be avoided.

Product Information
Banamine ${ }^{\circ}$ Transdermal
(flunixin transdermal solution)

Pour-On for Beef and Dairy Cattle $50 \mathrm{mg} / \mathrm{mL}$

Non-Steroidal Anti-inflammatory Drug
CAUTION: Federal law restricts this drug to use by or on the order of a licensed veterinaria.
DESCRIPTION: Each milliliter of Banamine Transdermal pour-on contains 50 mg flunixin lequival to 83 mg flunixin megluminel, 150 mg pyrrolidone, 50 mg L-menthol, 500 mg propylene glycal dicaprylate/dicaprate NF , $0.20 \mathrm{mg} \mathrm{FD} \& C$ Red N o. 40 , and glycerol monocaprylate NF qs
INDICATIONS: Banamine Transdermal pour-on is indicated for the control of pyrexia associated with bovine respiratory disease and acute bovine mastitis, and the control of pain associated with foot

Not for use in beef and dairy bulls intended for breeding over 1 year of age, replacement dairy heifers over 20 months of age, dry dairy cows, dairy calves, or veal calves.
DOSAGE AND ADMINISTRATION: Apply only once at a dose of 3.3 mg flunixin per kg bod weight $11.5 \mathrm{mg} / \mathrm{lb} ; 3 \mathrm{~mL}$ per 100 lbs topically in a narrow strip along the dorsal midline from the withers to the tailhead. Round the doses up to the nearest weight increment on the dosing chamber If pyrexia, or the pain associated with foot rot persists, the diagnosis should be re-evaluated and alternative therapy considered. Do not treat cattle if the hide is wet or may get wet in the six hours after dosing because effectiveness has not been evaluated under wet hide conditions. Practice the Administration and Overfill Reduction Instructions a few times to become familiar witt operating the package before dosing animals.
Step 1

If the dosing chamber is overfilled, follow the Overfill Reduction Instructions. Step 3

Pour the measured volume on he dorsal midiline from withe to tail head. Application to a small area should be avoided.

A small amount of liguid will remain on the walls of the chamber but the chamber is calibrated to account for this.

OVERFILL REDUCTION INSTRUCTIONS
Step 1

Step 2

e beginning of the transfer tub inside the bottle.
Step 3

Hold the bottle horizontally to allow product to cover the end of the transfer tube inside the dosing chamber
Step 4

Sweeze and release the bottle reneatedy.
Product will return to the bottle through the transfer tuhe
Figure 1 - Recommended pour-on location

CONTRAINDICATIONS: NSAIDs inhibit production of prostaglandins which are important il signaing the initiation of parturition. The use of flunixin can delay parturition and prolong labor which may increase the risk of stillbirth. Do not use Banamine Transdermal pour-on within 48 hours of expected parturtion. Uo not use in animals showing hypersensitivity to flunixin meglumine. USER SAFETY WARNINGS: Not for use in humans. Keep out of reach of children. Flunixin transdermal solution is a potent non-steroidal ant--Inflammatory drug INSAID, and ingestion ma cause gastrointestinal irritation and bleeding, kidney, and central nervous system effects.
This product has been shown to cause severe and potentially irreversible eye damage Iconjunctivitis, irrtis, and corneal opacityl and iritation to skin in laboratory animals. Users should wear suitable eye
gloves and appropriate clothing (such as long-sleeve shirt and pants) to prevent skin contact andor drug absorption. Wash hands after use
In case of accidental eye contact, flush eyes immediately with water and seek medical attention. If wearing contact lenses, lush eyes immediately with water before removing lenses. In case of accidental skin contact and/or clothing contamination, wash skin thoroughly with soap and water and launder clothing with detergent. In case of ingestion do not induce vomiting and seek medical attention immediately. Probable mucosa damage may contraindicate the use of gastric lavage. Provide product tabel medical personne

Withdrawal Periods and Residue Warnings:

Wik that has been taken during treatment and for 48 hours after treatment must not be used for
human consumption. Cattle must not be slaughtered for human consumption within 8 days of treatment. Not for use in replacement dairy heifers 20 months of age or older or dry dairy cows, use in these cattle may cause drug residues in calves born to these cows or heifers. Not for use in beef calves less than 2 months of age, dairy calves, and veal calves. A withdrawal period has not been established for this product in pre-ruminating calves. Approved only as a single topical dose
, WS D gastrointestinal, renal, and hepatic toxicity. Sensitivity to drug-associated adverse events varies w the individual patient. Patients at greatest risk for adverse events are those that are dehydrated Banamine Transdermal should be used with caution in animals with suspected pre-existing gastric erosions or ulcerations. Concurrent administration of other NSAIDs, corticosteroids, or potentially nephrotoxic drugs should be avoided or used only with careful monitoring because of the potential increase of adverse events. Banamine Transdermal is approved only as a single topical dose. The safety of repeated treatment has not been evaluated.
NSAIDs are known to have potential effects on both parturition (see Contraindications) and the estrous cycle. There may be a delay in the onset of estrus if flunixin is administered during the prostagland Shase of the estrous cycle. NSAIDs are known to have the potential to delay parturition through a tocolytic effect. The use of NSAIDs in the immediate post-partum period may interfere with uterin whelution and expulsion of fetal membranes. Cows should be monitored carefully for placental retention and metritis if Banamine Transdermal pour-on is used within 24 hours after parturition. Not for use in beef and dairy bulls intended for breeding over 1 year of age because reproductive safety has not been evaluated.
CLINICAL PHARMACOLOGY: Flunixin meglumine is a nonsteroidal, anti-inflammatory drug. It is a weak acid ($\mathrm{pK} \mathrm{K}=5.82)^{\prime}$ ' which exhibits a high degree of plasma protein binding (approximately 99%).' However, free (unbound) drug appears to readily partition into body tissues (Vss predictions range from 297 to $782 \mathrm{~mL} / \mathrm{kg})^{2.5} \mathrm{In}$ n cattle, elimination occurs primarily through biliary excretion.
Flunixin persists in inflammatory tissues ${ }^{6}$ and is associated with anti-inflammatory properties which rediction of drug concentrations based upon the estimated plasma termina dimination halflife wit Tkly undrestimat both the duraion of druaction and the concentration of drug remiang at site of activity.
Pharmacokinetic properties of flunixin transdermal solution in cattle administered at a dose of $2.5 \mathrm{mg} / \mathrm{kg}$, are summarized in Table 1 , comparing results between animals that were allowed to
 However, no dose adiustment is needed to to account for the effect of flicking because the substantial evidence of effectiveness was demonstrated in animals that were allowed to lick.
Table 1. Average $|+|$-standard deviation [SD]| $P K$ parameters after a single administration of flunixin transdermal solution at a dose of $2.5 \mathrm{mg} / \mathrm{kg}$ in cattle that were either allowed to lick or prevented fro allo- and self-licking ($\mathrm{n}=24 /$ group).

PK parameter	Non-licking		Licking	
	Mean	\pm SD	Mean	\pm SD
$C_{\text {max }}(\mathrm{ng} / \mathrm{mL}$)	1496	769	N/A	N/A
Concentration at $2 \mathrm{~h}^{*}$	1282	533	1072	353
$\mathrm{T}_{\text {max }}(\mathrm{h})$	1.29	0.464	N/A	N/A
AUC2 2 isat $\left(\ln { }^{*} / \mathrm{h} / \mathrm{mL}\right.$	7499	2131	6827	4672
$\mathrm{T}_{1 / 2}(\mathrm{~h})$	8	2	9	6

*First blood level in the licking group was taken at 2 hours post-dose. first blood sample in non-licking group was taken at 0.25 hours post-dose.
$L_{\text {max }}$: Maximum observed plasma concentration
$T_{\text {max }}$: Time at which Cmax was observed
AUC2:2as: Area under the plasma concentration versus time curve measure
between 2 hours and the time of the last quantifiable concentration T_{112} : Terminal elimination hall-life

Absorption of flunixin transdermal solution in cattle is dependent on environmental temperatur. The effect of temperature on flunixin absorption was tested in temperatures ranging from 15.3 to $20.1^{\circ} \mathrm{F}$ laverage low in the coldest study to 80 to $100^{\circ} \mathrm{F}$ laverage high in the warmest study). Flunixin concentrations were consistently lower when the pour-on product was administered in a cold (temperature) rather than hot temperaturel environment. However, the clinical effectiveness was demonstrated over the range of environmental conditions expected under field conditions. No dose djustments are necessary due to environmental temperature.

References

1. Johansson M, Anler EL. Gas chromatographic analysis of flunixin in equine urine after extractive methylation. J Chromatogr. 1988; 427:55-66.
2. Odensvik K, Johansson M. High-performance liquid chromatography method for determination of flunixin in bovine plasma and pharmacokinetics after single and repeated doses of the drup. Am J J Res. 1995; 56:489-495
3. Anderson KL, Neff-Davis CA, Davis LE, Bass VD. Pharmacokinetics of flunixin meglumine in lactating cattle efter sing
51:1464-1467.
4. Odensvik K. Pharmacokinetics of flunixin and its effect on prostaglandin F2a metabolite concentrations after oral and intravenous administration in heifers. J Vet Pharmacol Ther. 1995;18:254 259.
smith JA, Harris SJ. Pharmacokinetics of flunixin meglumine in the cow. Res Vet Sci 1985; 39:110-112.
. Lees P , Higgins AJ. Funixin inhbits prostaglandin E2 production in equine inflammation. Res Vet Sci. 1984; 37:347-349
TARGET ANIMAL SAFETY: In a target animal safety study in 32 six-month old beef cattle (16 tastrated males and 16 femaless, flunixin transdermal solution was administered topically at 3.3, 9.9, and $16.5 \mathrm{mg} / \mathrm{kg}$ body weight $11 \mathrm{X}, 3 \mathrm{X}$, and 5 X the labeled dose) on Days 1,2 , and 3 (3X the labeled adinistation frequency.' Cattle were continuousty restrained to prevent icking. In addition, the stud was conducted under warm environmental conditions $170^{\circ} \mathrm{F}$ to $80^{\circ} \mathrm{F}$ on dosing days). One animal in the $3 X$ group and three animals in the $5 X$ group exhibiting twisting, kicking, rubbing on the fence, and or prancing, starting 5 to 15 minutes after dosing and lasting up to an hour after dosing on both Days 2 and 3 . Two 5 X animals had positive fecal occult blood on one of three post-treatment days, and one $5 \times$ animal had positive fecal occult blood on Days 2 and 3 post-treatment. Trace occult blood was found in the urine of three animals: one 5 X animal on Day 1 , one 5 X animal on Day 3 , and one 3 X animal on Day 3. Test article-related pathology changes included a dose-related increase in the incidence and
severity of abomasal erosions and ulcerations and inflammatory cell infiltrates, epidermal necrosis, and small areas of dermal necrosis at the aplication site The abomasal lesions correlated with feel coult blood in thee 5 X animals. Ther were no bleeding or linical signs of abomasal ulceration during the study.
Application site reactions, including dandruff/skin flakes, hair damage (thin, broken, brittle hair), and kin thickening were observed in effectiveness and/or supportive studies. The application site reactio were first observed around three to seven days post-dosing and lasted for abo
pharmacokinetic evaluation demonstrated that the systemic exposure of flunixin is markedly ower when administered transdermally at a dose of 3.3 mg flunixin $/ \mathrm{kg}$ BW than when administered travenously a a dose of 2.2 mg funixin/kg BW, therefore, female reproductive safety is supported (in cattle, NADA 101-47

EFFECTIVENESS:

linical field studies - bovine respiratory disease
harmacokinetic studies established that the absorption of flunixin administered transdermally to cattle is highly dependent on environmental temperature. Therefore the effectiveness of flunixin ansdermal solution for the control of pyrexia associated with bovine respiratory ussease was four geogan Iocitins CCaifornia, Kansas, Nebraska and Texas ues. a fiell stady conducted memperatures laverage temperatures ranged from $42^{\circ} \mathrm{F}$ to $74^{\circ}{ }^{\circ} \mathrm{F}$ on enrollment days and a field study onducted at a single site INebraskal under cold environmental conditions laverage temperatures aed from $2{ }^{\circ} \mathrm{F}$ to $20{ }^{\circ} \mathrm{F}$ on anrollment days. In both studies, cattle were housed in groups and wer not prevented from licking.
In both studies, cattle exhibiting clinical signs of BRD and having a rectal temperature of at least 04.5° F were enrolled. A total of 235 cattle in the multi-location field study and 50 cattle at the single te field study were administered either flunixin transdermal solution $(3.3 \mathrm{mg} / \mathrm{kg}$ BW) or an equivale clume of dyed saline as a pour-on once on Day 0 . Six hours after treatment, rectal temperatures mpared to the treatment success rate re of the flunixin transsermal solution-teated scess was efined as a drop in rectal temperature of $\geq 2^{\circ}$ F in an individual animal. In the multi-location study, the eatment success rate was significantly different (p <0.0001) and higher for the flunixin transdermal solution-treated group (70/120, 58.3\%) compared to the dyed saline control group (77115, 6.1\%). In he single site study, the treatment success rate was significantly different (p $=0.0002$) and higher Sor the flunixin transdermal solution-treated group ($19 / 25,76 \%$) compared to the dyed saline control group ($4 / 25,16 \%$).
Induced infection model studies - foot rot
The effectiveness of flunixin transdermal solution for the control of pain associated with foot rot in beef and dairy cattle was demonstrated under a range of environmental temperatures in two studies: induced infection model study conducted in Nebraska with temperatures ranging from $61^{\circ} \mathrm{Ft}$ ${ }^{\circ}$ F on the day of enrollment and treatment; and an induced infection model study conducted in
 om licking.

n each study, cattle were challenged by subcutaneous injection of a culture of Fussobacterium ecrophorum into the interdigital space of the right front foot using a method that was validated to duce pain representative of foot rot. Cattle were enrolled when they demonstrated signs of pai ascel with foot rot based on lameness, interdigital lesion, and interdigital sweling criteria. ressure mat gait parameters maximum total force (kgfl) and contact area $\left(\mathrm{cm}^{2}\right)$ were also measured | enrolment. A total of 30 cattle at each site were administered either flunixin transdermal solution |
| :--- |
| $3 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ or an equivalent volume of dyyed saline as a pour-on once on Day 0 . Six hours after | reatment, ameness scores and pressure mat gat parameters maximum total force and contact are re

Effectiveness was determined independently at each site based on treatment success rates at six hours after treatment; and the change in maximum total force and contact area between enrollment and x hours after treatment. Atreatment success was defined as a decrease in lameness score by \geq scale 1 to 5 , with enrollment of animals with lameness score $\geq 3 \mid$ from the enrollment lameness score he treatment success rate of the flunixin transdermal solution-treated group was compared to the reatment successs rate in the dyed saline control group at both sites.
hanges in biometric gait parameters were also compared between the treatment groups. n the Nebraska study, the treatment success rate was significantly different and higher for the unixin transdermal solution-treated group (15/15, 100\%) compared to the dyed saline control group /115, 6.67\%); and the mean change in maximum total force and mean change in contact area were atistically significantly different $(p<0.0001)$ and higher in the flunixin transdermal solution-treated group (43.08 kgf and $16.76 \mathrm{~cm}^{2}$) compared to the dyed saline control group -4.14 kgf and $-2.70 \mathrm{~cm}^{2}$). In the Kansaa study, the treatment success rate was significantly different ($\mathrm{p}=0.00387$) and higher for the unixin transdermal solution-control group (14/15, 93.33%) compared to the dyed saline control group $B / 15,53.33 \% /$; and the mean change in maximum total force and mean change in contact area were tatistically significantly different $\mid p=0.0002$ and $p<0.0001$, respectively and higher in the flunixin ansdermal solution-treated group 134.32 kg and $16.38 \mathrm{~cm}^{2}$ compared to the dyed saline control roup -0.0 .54 kg and $-0.96 \mathrm{~cm}^{2}$.

Clinical field study - acute bovine mastitis
eeffectiveness of flunixin rransdermal salution for the control of pyrexia associated with acute bovine mastitis was demonstrated under a range of environmental temperatures ($37.4^{\circ} \mathrm{F}$ to $86^{\circ} \mathrm{F}$) a mult-site field study conducted in France, Germany, and Spain. Cattle were housed in a manner which did not prevent them from licking themselves or other cows. Lactating dairy cows were enrolled when they exhibited acute signs of mastitis in one or two quarters based on an evaluation of udder irmness, swelling, and pain), milk characteristics consistent with mastitis, and a rectal temperature at least 104°
Enrolled cows were administered either flunixin transdermal solution 13.3 mg flunixin $/ \mathrm{kg}$ BW/ or equivalent volume of dyed saline as a pour-on once on Day 0. Six hours after treatment, rectal emperatures were measured. The treatment success rate of the flunixin transdermal solution-treated group was compared to the treatment success rate in the dyed saline control group. A treatment success was defined as a drop in rectal temperature of $\geq 2^{\circ}$ F in an individual animal. The treatment scesss rate was significantly different $p<0.00$) and higher in the tumixin eated group ($61 / 64,95 \%$) compared to the dyed saline control group (23/66, 35%).

CONTACT INFORMATION:

or technical assistance orto reporta suspected adverse drug experience, call: 1-800-211-3573. For customer service or to request a Safety Data Sheet ISDS), call: 1-800-521-5767. For additional Banamine Transdermal pour-on information go to www.BanamineTD.com oradationa information about adverse drug experience reporting for animal drugs, contact FDA at 888-FDA-VETS or online at www.fda.gov/reportanimalae.
HOW SUPPLIED: Banamine Transdermal pour-on, is available in $100-\mathrm{mL}$ NDC N061-4363-01) 250-mL (NDC O061-4363-02) and 1-L INDC 0061-4363-031 bottles.

STORAGE INFORMATION: Store at or below $30^{\circ} \mathrm{C} 186^{\circ} \mathrm{F}$). Use within 6 months of first opening.
Patent information: http://www.merc com/product/patent/home.htm
proved by FDA under NADA \# 141-450.
se Only as Directed
Copyright © 2017-2022 Merck \& Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved. frmulated in Germany Distributed by: Intervet Inc. d/b/a Merck Animal Health, Madison, NJ 07940
ev. 10/2022

